EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods. Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Recall multiplication and division facts for multiplication tables up to 12×12. Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. Recognise and use factor pairs and commutativity in mental calculations Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19 . Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. Multiply and divide numbers mentally drawing upon known facts. Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 . Recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$) Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Perform mental calculations, including with mixed operations and large numbers Identify common factors, common multiples and prime numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations. Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Solve problems, including doubling, halving and sharing.	Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities. They make connections between arrays, number patterns, and counting in twos, fives and tens.	Pupils use a variety of language to describe multiplication and division. Pupils are introduced to the multiplication tables. They practise to become fluent in the 2,5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations. Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures (for example, $40 \div 2=20,20$ is a half of 40). They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and $20 \div 5=4$).	Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2,4 and 8 multiplication tables. Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times$ $12=20 \times 12=240$) and multiplication and division facts (for example, using $3 \times 2=6,6 \div 3$ $=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$). Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division. Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).	Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency. Pupils practise mental methods and extend this to three-digit numbers to derive facts (for example $600 \div 3=200$ can be derived from $2 \times 3=6$). Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see Mathematics Appendix 1). Pupils write statements about the equality of expressions (for example, use the distributive law $39 \times 7=30 \times 7+9 \times 7$ and associative law $(2 \times 3) \times 4=2 \times(3$ $\times 4)$). They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations for example, $2 \times 6 \times 5=10 \times 6=60$. Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.	Pupils practise and extend their use of the formal written methods of short multiplication and short division. They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations. They use and understand the terms factor, multiple and prime, square and cube numbers. Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4=24 \mathrm{r} 2=$ $24^{1} /{ }_{2}=24.5 \approx 25$). Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres. Distributivity can be expressed as $a(b+c)=a b+$ ac. They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times$ $10=9^{2} \times 10$). Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+$ $25 ; 33=5 \times \square$).	Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division. They undertake mental calculations with increasingly large numbers and more complex calculations. Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. Pupils round answers to a specified degree of accuracy, for example, to the nearest $10,20,50$ etc, but not to a specified number of significant figures. Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+$ 1) $\times 3=9$. Common factors can be related to finding equivalent fractions.

