

Notes and Guidance (Non-Statutory)

Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions	Measurement	Geometry: Properties of Shapes	Statistics
Pupils now use multiples of 2, $3,4,5,8,10,50$ and 100 . They use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, building on work in year 2 (for example, $146=100$ and 40 and $6,146=$ 130 and 16). Using a variety of representations, including those related to measure, pupils continue to count in ones, tens and hundreds, so that they become fluent in the order and place value of numbers to 1000.	Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100. Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see Appendix 1).	Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2,4 and 8 multiplication tables. Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times 12=20$ $\times 12=240$) and multiplication and division facts (for example, using $3 \times$ $2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60,60 \div$ $3=20$ and $20=60 \div 3$). Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division. Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).	Pupils connect tenths to place value, decimal measures and to division by 10. They begin to understand unit and non-unit fractions as numbers on the number line, and deduce relations between them, such as size and equivalence. They should go beyond the $[0,1]$ interval, including relating this to measure. Pupils understand the relation between unit fractions as operators (fractions of), and division by integers. They continue to recognise fractions in the context of parts of a whole, numbers, measurements, a shape, and unit fractions as a division of a quantity. Pupils practise adding and subtracting fractions with the same denominator through a variety of increasingly complex problems to improve fluency.	Pupils continue to measure using the appropriate tools and units, progressing to using a wider range of measures, including comparing and using mixed units (for example, 1 kg and 200 g) and simple equivalents of mixed units (for example, $5 \mathrm{~m}=500 \mathrm{~cm}$). The comparison of measures should also include simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high) and this connects to multiplication. Pupils continue to become fluent in recognising the value of coins, by adding and subtracting amounts, including mixed units, and giving change using manageable amounts. They record f and p separately. The decimal recording of money is introduced formally in year 4. Pupils use both analogue and digital 12-hour clocks and record their times. In this way they become fluent in and prepared for using digital 24-hour clocks in year 4.	Pupils' knowledge of the properties of shapes is extended at this stage to symmetrical and nonsymmetrical polygons and polyhedra. Pupils extend their use of the properties of shapes. They should be able to describe the properties of 2-D and 3D shapes using accurate language, including lengths of lines and acute and obtuse for angles greater or lesser than a right angle. Pupils connect decimals and rounding to drawing and measuring straight lines in centimetres, in a variety of contexts.	Pupils understand and use simple scales (for example, 2, 5, 10 units per cm) in pictograms and bar charts with increasing accuracy. They continue to interpret data presented in many contexts.

